❓Может ли одна модель показывать одновременно высокий bias в одних сегментах данных и высокий variance в других
Да, такое вполне возможно. Модель может хорошо работать на одних подмножествах данных, но плохо — на других.
Высокий bias в одном сегменте: например, в задаче регрессии модель систематически занижает предсказания для больших значений признаков — значит, она недостаточно сложна или плохо учится на этих данных.
Высокий variance в другом сегменте: в областях с редкими или шумными данными модель может давать сильно изменяющиеся прогнозы, что говорит об переобучении и чувствительности к шуму.
🛠Как это исправить
1️⃣Локальная адаптация модели:
— Разбить данные на сегменты (например, по диапазонам признаков или кластерам). — Обучить отдельные модели для каждого сегмента (например, ансамбли или модели с разными параметрами).
2️⃣Использовать гибридные или иерархические модели:
— Методы типа Mixture of Experts, которые «специализируются» на разных областях. — Иерархические модели или модели с ветвлениями, учитывающие неоднородность данных.
3️⃣Добавить или улучшить признаки:
— Возможно, проблема в том, что модель не видит важных факторов, объясняющих поведение в разных сегментах.
4️⃣Улучшить сбор и баланс данных:
— Недостаток данных в некоторых сегментах вызывает высокую дисперсию — собрать больше данных или использовать аугментацию.
❓Может ли одна модель показывать одновременно высокий bias в одних сегментах данных и высокий variance в других
Да, такое вполне возможно. Модель может хорошо работать на одних подмножествах данных, но плохо — на других.
Высокий bias в одном сегменте: например, в задаче регрессии модель систематически занижает предсказания для больших значений признаков — значит, она недостаточно сложна или плохо учится на этих данных.
Высокий variance в другом сегменте: в областях с редкими или шумными данными модель может давать сильно изменяющиеся прогнозы, что говорит об переобучении и чувствительности к шуму.
🛠Как это исправить
1️⃣Локальная адаптация модели:
— Разбить данные на сегменты (например, по диапазонам признаков или кластерам). — Обучить отдельные модели для каждого сегмента (например, ансамбли или модели с разными параметрами).
2️⃣Использовать гибридные или иерархические модели:
— Методы типа Mixture of Experts, которые «специализируются» на разных областях. — Иерархические модели или модели с ветвлениями, учитывающие неоднородность данных.
3️⃣Добавить или улучшить признаки:
— Возможно, проблема в том, что модель не видит важных факторов, объясняющих поведение в разных сегментах.
4️⃣Улучшить сбор и баланс данных:
— Недостаток данных в некоторых сегментах вызывает высокую дисперсию — собрать больше данных или использовать аугментацию.
For some time, Mr. Durov and a few dozen staffers had no fixed headquarters, but rather traveled the world, setting up shop in one city after another, he told the Journal in 2016. The company now has its operational base in Dubai, though it says it doesn’t keep servers there.Mr. Durov maintains a yearslong friendship from his VK days with actor and tech investor Jared Leto, with whom he shares an ascetic lifestyle that eschews meat and alcohol.
NEWS: Telegram supports Facetime video calls NOW!
Secure video calling is in high demand. As an alternative to Zoom, many people are using end-to-end encrypted apps such as WhatsApp, FaceTime or Signal to speak to friends and family face-to-face since coronavirus lockdowns started to take place across the world. There’s another option—secure communications app Telegram just added video calling to its feature set, available on both iOS and Android. The new feature is also super secure—like Signal and WhatsApp and unlike Zoom (yet), video calls will be end-to-end encrypted.
Библиотека собеса по Data Science | вопросы с собеседований from us